Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production

نویسندگان

  • Yao Zhang
  • Xiangming Xiao
  • Luis Guanter
  • Sha Zhou
  • Philippe Ciais
  • Joanna Joiner
  • Stephen Sitch
  • Xiaocui Wu
  • Julia Nabel
  • Jinwei Dong
  • Etsushi Kato
  • Atul K. Jain
  • Andy Wiltshire
  • Benjamin D. Stocker
چکیده

Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short‐term favorable weather conditions are an important control of interannual variability in carbon and water fluxes

Ecosystem models often perform poorly in reproducing interannual variability in carbon and water fluxes, resulting in considerable uncertainty when estimating the land-carbon sink. While many aggregated variables (growing season length, seasonal precipitation, or temperature) have been suggested as predictors for interannual variability in carbon fluxes, their explanatory power is limited and u...

متن کامل

Terrestrial mechanisms of interannual CO2 variability

[1] The interannual variability of atmospheric CO2 growth rate shows remarkable correlation with the El Niño Southern Oscillation (ENSO). Here we present results from mechanistically based terrestrial carbon cycle model VEgetation-Global-Atmosphere-Soil (VEGAS), forced by observed climate fields such as precipitation and temperature. Land is found to explain most of the interannual CO2 variabil...

متن کامل

Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain-use efficiency.

Quantifying the ecological patterns of loss of ecosystem function in extreme drought is important to understand the carbon exchange between the land and atmosphere. Rain-use efficiency [RUE; gross primary production (GPP)/precipitation] acts as a typical indicator of ecosystem function. In this study, a novel method based on maximum rain-use efficiency (RUEmax) was developed to detect losses of...

متن کامل

Variations in atmospheric CO2 growth rates coupled with tropical temperature.

Previous studies have highlighted the occurrence and intensity of El Niño-Southern Oscillation as important drivers of the interannual variability of the atmospheric CO2 growth rate, but the underlying biogeophysical mechanisms governing such connections remain unclear. Here we show a strong and persistent coupling (r(2) ≈ 0.50) between interannual variations of the CO2 growth rate and tropical...

متن کامل

CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America.

Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such analyses are poorly constrained by measured CO2 exchange in drylands. Here we address this observation gap with eddy covariance data from 25 sites in the water-limited Southwest region of North America with observed ranges in annual p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016